Precision ground tracking critical to Gaia mapping – Astronomy Now

Share With Your Friends
Facebook
Twitter
Pinterest
LinkedIn


A composite image from ESO’s VLT Survey Telescope showing the position of the European Space Agency’s Gaia spacecraft. Such precise tracking improves the accuracy of Gaia’s sky maps. Image: ESO

Gaia, operated by the European Space Agency (ESA), surveys the sky from orbit to create the largest, most precise three-dimensional map of our galaxy. One year ago, the Gaia mission produced its much-awaited second data release, which included high-precision measurements — positions, distance and proper motions — of more than one billion stars in our Milky Way galaxy. This catalogue has enabled transformational studies in many fields of astronomy, addressing the structure, origin and evolution the Milky Way and generating more than 1700 scientific publications since its launch in 2013.

In order to reach the accuracy necessary for Gaia’s sky maps, it is crucial to pinpoint the position of the spacecraft from Earth. Therefore, while Gaia scans the sky, gathering data for its stellar census, astronomers regularly monitor its position using a global network of optical telescopes, including the VST at ESO’s Paranal Observatory. The VST is currently the largest survey telescope observing the sky in visible light, and records Gaia’s position in the sky every second night throughout the year.

“Gaia observations require a special observing procedure,” explained Monika Petr-Gotzens, who has coordinated the execution of ESO’s observations of Gaia since 2013. “The spacecraft is what we call a ‘moving target’, as it is moving quickly relative to background stars — tracking Gaia is quite the challenge.”

An artist’s impression of the European Space Agency’s Gaia spacecraft. Image: ESA/ATG medialab; background image: ESO/S. Brunier

The VST observations are used by ESA’s flight dynamics experts to track Gaia and refine the knowledge of the spacecraft’s orbit. Painstaking calibration is required to transform the observations, in which Gaia is just a speck of light among the bright stars, into meaningful orbital information. Data from Gaia’s second release was used to identify each of the stars in the field of view, and allowed the position of the spacecraft to be calculated with astonishing precision — up to 20 milliarcseconds.

“This is a challenging process: we are using Gaia’s measurements of the stars to calibrate the position of the Gaia spacecraft and ultimately improve its measurements of the stars,” explains Timo Prusti, Gaia project scientist at ESA.

“After careful and lengthy data processing, we have now achieved the accuracy required for the ground-based observations of Gaia to be implemented as part of the orbit determination,” says Martin Altmann, lead of the Ground Based Optical Tracking (GBOT) campaign at the Centre for Astronomy of Heidelberg University, Germany.

The GBOT information will be used to improve our knowledge of Gaia’s orbit not only in observations to come, but also for all the data that have been gathered from Earth in the previous years, leading to improvements in the data products that will be included in future releases.





Source link

Share With Your Friends
Facebook
Twitter
Pinterest
LinkedIn